Light stars in large polyhedral maps on surfaces

نویسنده

  • Milan Tuhársky
چکیده

It is well known that every polyhedral map with large enough number of vertices contains a vertex of degree at most 6. In this paper the existence of stars having low degree sum of their vertices in polyhedral maps is investigated. We will prove: if G is a polyhedral map on compact 2-manifold M with non-positive Euler characteristic (M) and G has more than 149| (M)| vertices then G contains an edge of weight at most 15, or a path of weight at most 20 on three vertices with a central 4-vertex, or a 3-star of weight at most 24 with a central 5-vertex, or a 4-star of weight at most 32 with a central 6-vertex. © 2006 Published by Elsevier B.V.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light classes of generalized stars in polyhedral maps on surfaces

A generalized s-star, s ≥ 1, is a tree with a root Z of degree s; all other vertices have degree ≤ 2. Si denotes a generalized 3-star, all three maximal paths starting in Z have exactly i + 1 vertices (including Z). Let M be a surface of Euler characteristic χ(M) ≤ 0, and m(M) := b 5+ √ 49−24χ(M) 2 c. We prove: (1) Let k ≥ 1, d ≥ m(M) be integers. Each polyhedral map G on M with a k-path (on k ...

متن کامل

Discrete curvatures and Gauss maps for polyhedral surfaces

The paper concerns the problem of correct curvatures estimates directly from polygonal meshes. We present a new algorithm that allows the construction of unambiguous Gauss maps for a large class of polyhedral surfaces, including surfaces of non-convex objects and even non-manifold surfaces. The resulting Gauss map provides shape recognition and curvature characterisation of the polyhedral surfa...

متن کامل

Local Structures in Polyhedral Maps on Surfaces, and Path Transferability of Graphs

We extend Jendrol’ and Skupień’s results about the local structure of maps on the 2-sphere: In this paper we show that if a polyhedral map G on a surface M of Euler characteristic χ(M) ≤ 0 has more than 126|χ(M)| vertices, then G has a vertex with ”nearly” non-negative combinatorial curvature. As a corollary of this, we can deduce that path transferability of such graphs are at most 12. keyword...

متن کامل

Using generic programming for designing a data structure for polyhedral surfaces

Software design solutions are presented for combinatorial data structures, such as polyhedral surfaces and planar maps, tailored for program libraries in computational geometry. Design issues considered are exibility, time and space eeciency, and ease-of-use. We focus on topological aspects of polyhedral surfaces and evaluate edge-based representations with respect to our design goals. A design...

متن کامل

21 Polyhedral Maps

Historically, polyhedral maps on surfaces made their first appearance as convex polyhedra. The famous Kepler-Poinsot (star) polyhedra marked the first occurrence of maps on orientable surfaces of higher genus (namely 4), and started the branch of topology dealing with regular maps. Further impetus to the subject came from the theory of automorphic functions and from the Four-Color-Problem (Coxe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 307  شماره 

صفحات  -

تاریخ انتشار 2007